Why the renewed excitement about Ca status?

- High prevalence of subclinical hypocalcemia (SCH):
 - 25% of first lactation animals
 - 50% of second lactation and older cows
- High impact of SCH:
 - Immune competence
 - Metabolic health
 - Milk production
 - Reproductive performance

High Impact of SCH

- Blood Ca <8.6 mg/dL in first 3 DIM (Martinez et al., 2012):
 - Decreased neutrophil killing capacity
 - Increased risk of metritis and endometritis
 - Tendency for later pregnancy
- Blood Ca <8.4 mg/dL in first week (Chapinal et al., 2012):
 - Increased odds of DA
 - Decreased early lactation milk production
 - Reduction in pregnancy at 1st AI

Chapinal et al., 2013, Kimura et al., 2006, Martinez et al. 2013, Reinhardt et al., 2011
Increasing Blood Calcium

- **PARATHYROID GLAND**
 - PTH secretion
 - PTH
 - Low blood calcium
 - Activated Vitamin D
 - Calcium excretion
 - Active Vitamin D
 - INTESTINE
 - Ca absorption
 - BONE
 - Release of Ca

Goff et al., 2008

Metabolic Alkalosis

- **PARATHYROID GLAND**
 - PTH secretion
 - Calcium excretion
 - Low blood calcium
 - Activated Vitamin D
 - Ca absorption
 - INTESTINE
 - Release of Ca

Goff et al., 2008, Goff et al., 2014

Altering Blood pH via Dietary Cation Anion Difference (DCAD)

- **Cations:** Sodium (+1), Potassium (+1)
- **Anions:** Chloride (-1), Sulfate (-2)
- More H⁺ in blood to maintain electroneutrality = Decreased pH
- Result:
 - Improved sensitivity of PTH receptor to PTH stimulation
 - Ca release from bone to offset pH drop (excreted from kidney until hypocalcemic condition occurs)

Goff et al., 2014, Goff and Honst, 2003

Cows fed low DCAD have higher Ca and 1,25-(OH)₂ vitamin D after PTH administration

Goff et al., 2014
Strategies for application of DCAD for close-up dry cows

1) Low K ration + NO anion supplementation
 • Calculated DCAD ~ +10 mEq/100 g DM
 • Urine pH = 8.3 – 8.5

2) Low K ration + PARTIAL anion supplementation
 • Calculated DCAD ~ 0 mEq/100 g DM
 • Urine pH = 7 – 8

3) Low K ration + FULL anion supplementation
 • Calculated DCAD ~ -10 to -15 mEq/100 g DM
 • Urine pH = 5.5 – 6.0
 ***Necessary to regularly monitor urine pH and adjust ration

*DCAD in mEq/100 g DM = (Na + K) - (Cl + S)

Questions to answer about DCAD application:

• Can SCH be controlled with the use of a DCAD program?

• Are there benefits to partial anion supplementation?

• If anion supplementation is increased, are there increased benefits in mineral status and performance?

Objective

• Evaluate the effects of anion supplementation to cows during the prepartum period on:
 • periparturient mineral status
 • performance
 • metabolism
 • immune parameters
 • uterine health

Materials and Methods

• 30 multiparous cows per treatment
 • Completely randomized design
 • Restricted to balance for previous lactation milk production and lactation number

• 3 prepartum dietary treatments:
 - Low K control= +17.4 mEq/100 g diet DM
 - Medium DCAD= +3.7 mEq/100 g diet DM
 - Low DCAD= -10.5 mEq/100 g diet DM
 Target urine pH= 5.5 – 6.0
Experimental Diet Ingredient Composition (kgs of DM/d)

<table>
<thead>
<tr>
<th>Ingredient (kgs DM/d)</th>
<th>Control</th>
<th>MedDCAD</th>
<th>LowDCAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMR Corn Silage</td>
<td>5.79</td>
<td>5.79</td>
<td>5.79</td>
</tr>
<tr>
<td>Wheat Straw</td>
<td>3.63</td>
<td>3.63</td>
<td>3.63</td>
</tr>
<tr>
<td>Amino Plus</td>
<td>1.04</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>Citrus Pulp</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>Soybean Hulls</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Canola Meal</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>Molasses</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Calcium Diphosphate</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Ground corn grain</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Salt</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Vitamin Mix</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Rumensin (mg)</td>
<td>318</td>
<td>318</td>
<td>318</td>
</tr>
<tr>
<td>Animate</td>
<td>-</td>
<td>0.25</td>
<td>0.52</td>
</tr>
<tr>
<td>Wheat Midds</td>
<td>0.42</td>
<td>0.34</td>
<td>0.25</td>
</tr>
<tr>
<td>Calcium carbonate</td>
<td>0.37</td>
<td>0.36</td>
<td>0.35</td>
</tr>
<tr>
<td>Corn Distillers Ethanol</td>
<td>0.29</td>
<td>0.17</td>
<td>0.05</td>
</tr>
<tr>
<td>Magnesium Oxide</td>
<td>0.07</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>Urea</td>
<td>0.05</td>
<td>0.03</td>
<td>-</td>
</tr>
</tbody>
</table>

Urine pH, Intake & Diets

- Urine sampling
 - pH determined 3X weekly prior to calving
 - Dietary adjustments made as needed
- Dry Matter Intake
 - Feed delivered and refused recorded daily
 - Fed with target of 10% refusals to allow ad libitum intake
- TMR and Diet Ingredients
 - Sampled weekly for dry matter determination
 - Composited over 4 weeks and analyzed by Cumberland Valley Analytical Services

Production & Energy Status

- Milk production
 - Cows milked 3X per day
 - Daily milk weights recorded
 - Samples collected at all milkings on one day per week analyzed by midinfrared techniques for:
 - fat, true protein, lactose, total solids, urea-N, and somatic cell count (DairyOne Laboratories, Ithaca, NY)
- Body Weight and Body Condition Score
 - Recorded weekly
 - BCS averaged over two scorers (Wildman et al., 1982)
Blood Sampling Scheme

Once prior to treatment
Begin Treatment Diets
Twice weekly until calving
Twice in 24 hrs & daily through 5 days
1X weekly through 56 days
-31 -24 -21 -14 -7 0 7 14 21
Prepartum and postpartum data analyzed separately
- MIXED procedure of SAS 9.4 with the repeated statement
- Covariates values included in the model when available
 - Fixed effects = treatment, time, parity (2nd vs. 3rd+), and two way interactions
 - Effect of decreasing DCAD was tested using orthogonal contrasts
 - Differences in frequency of hypocalcemia determined using Fisher’s Exact Test
 - LSMEANS and standard errors reported throughout
 - Significance declared at P ≤ 0.05, trends discussed at 0.05<P≤0.10

Analyzed Diet Composition (Mean ± S. D.)

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Control (Mean ± S.D.)</th>
<th>MedDCAD (Mean ± S.D.)</th>
<th>LowDCAD (Mean ± S.D.)</th>
<th>Lactating (Mean ± S.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM (% DM)</td>
<td>46.3 ± 1.8</td>
<td>46.5 ± 1.3</td>
<td>46.4 ± 1.1</td>
<td>45.7 ± 1.8</td>
</tr>
<tr>
<td>CP (% DM)</td>
<td>13.0 ± 0.3</td>
<td>13.2 ± 0.4</td>
<td>13.2 ± 0.5</td>
<td>15.7 ± 0.2</td>
</tr>
<tr>
<td>ADF (% DM)</td>
<td>30.2 ± 0.7</td>
<td>30.5 ± 1.3</td>
<td>30.1 ± 1.3</td>
<td>20.6 ± 0.8</td>
</tr>
<tr>
<td>NDF (% DM)</td>
<td>44.3 ± 1.2</td>
<td>44.0 ± 2.1</td>
<td>43.2 ± 1.8</td>
<td>31.1 ± 1.0</td>
</tr>
<tr>
<td>Starch (% DM)</td>
<td>17.0 ± 0.5</td>
<td>16.3 ± 0.8</td>
<td>16.3 ± 0.9</td>
<td>26.0 ± 0.7</td>
</tr>
<tr>
<td>NFC (% DM)</td>
<td>13.4 ± 0.9</td>
<td>34.3 ± 2.5</td>
<td>35.0 ± 1.9</td>
<td>45.8 ± 1.2</td>
</tr>
<tr>
<td>Fat (% DM)</td>
<td>1.1 ± 0.1</td>
<td>1.3 ± 0.2</td>
<td>1.1 ± 0.3</td>
<td>2.3 ± 0.2</td>
</tr>
<tr>
<td>Ca (% DM)</td>
<td>1.54 ± 0.12</td>
<td>1.57 ± 0.14</td>
<td>1.57 ± 0.07</td>
<td>0.95 ± 0.03</td>
</tr>
<tr>
<td>P (% DM)</td>
<td>0.44 ± 0.01</td>
<td>0.43 ± 0.01</td>
<td>0.41 ± 0.01</td>
<td>0.41 ± 0.02</td>
</tr>
<tr>
<td>Mg (% DM)</td>
<td>0.47 ± 0.01</td>
<td>0.48 ± 0.01</td>
<td>0.50 ± 0.03</td>
<td>0.44 ± 0.02</td>
</tr>
<tr>
<td>K (% DM)</td>
<td>1.28 ± 0.07</td>
<td>1.26 ± 0.06</td>
<td>1.24 ± 0.07</td>
<td>1.37 ± 0.05</td>
</tr>
<tr>
<td>S (% DM)</td>
<td>0.20 ± 0.01</td>
<td>0.30 ± 0.02</td>
<td>0.41 ± 0.02</td>
<td>0.29 ± 0.01</td>
</tr>
<tr>
<td>Fe (% DM)</td>
<td>0.33 ± 0.01</td>
<td>0.33 ± 0.01</td>
<td>0.34 ± 0.01</td>
<td>0.44 ± 0.02</td>
</tr>
<tr>
<td>Cu (% DM)</td>
<td>0.27 ± 0.03</td>
<td>0.47 ± 0.05</td>
<td>0.69 ± 0.04</td>
<td>0.40 ± 0.02</td>
</tr>
<tr>
<td>DCAD (mEq/100g DM)</td>
<td>18.3 ± 0.8</td>
<td>5.9 ± 3.4</td>
<td>7.4 ± 3.6</td>
<td>25.0 ± 1.5</td>
</tr>
</tbody>
</table>

Statistical Analysis

Urine pH

<table>
<thead>
<tr>
<th>Prepartum Diet</th>
<th>CON (Mean ± S.D.)</th>
<th>MedDCAD (Mean ± S.D.)</th>
<th>LowDCAD (Mean ± S.D.)</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine pH</td>
<td>8.20 (8.07-8.32)</td>
<td>7.84 (7.72-7.96)</td>
<td>5.98 (5.87-6.10)</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Urine pH

Day Relative to Calving

Prepartum Plasma Minerals

<table>
<thead>
<tr>
<th>Variable</th>
<th>CON</th>
<th>MedDCAD</th>
<th>LowDCAD</th>
<th>SEM</th>
<th>Linear Contrast</th>
<th>Quadratic Contrast</th>
<th>Trt×Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>9.45</td>
<td>9.58</td>
<td>9.59</td>
<td>0.09</td>
<td>0.34</td>
<td>0.54</td>
<td>0.64</td>
</tr>
<tr>
<td>Magnesium</td>
<td>1.84</td>
<td>1.85</td>
<td>1.79</td>
<td>0.03</td>
<td>0.17</td>
<td>0.39</td>
<td>0.13</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>6.16</td>
<td>6.05</td>
<td>6.11</td>
<td>0.10</td>
<td>0.71</td>
<td>0.52</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Postpartum (d 0-14) Plasma Minerals

<table>
<thead>
<tr>
<th>Variable</th>
<th>Prepartum Diet</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prepartum Diet</td>
<td>P-values</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>MedDCAD</td>
</tr>
<tr>
<td>P-values</td>
<td>Linear Contrast</td>
<td>Quadratic Contrast</td>
</tr>
<tr>
<td>Calcium</td>
<td>8.84</td>
<td>8.89</td>
</tr>
<tr>
<td>Magnesium</td>
<td>1.72</td>
<td>1.76</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>4.74</td>
<td>4.67</td>
</tr>
</tbody>
</table>

Plasma Calcium

Day Relative to Calving

Plasma Magnesium

- Prepartum: Trt P=0.28, Day P=0.02, Trt×Day P=0.13
- Postpartum: Trt P=0.35, Day P<.0001, Trt×Day P=0.008

Postpartum Plasma Calcium Treatment by Parity Interaction

- 2nd Parity: Control, MedDCAD, LowDCAD
- 3rd+ Parity: Trt x Parity P=0.06

Hypocalcemia (Ca<8.5 mg/dL): 2nd Lactation

- Percent
- Day Relative to Calving

Hypocalcemia (Ca<8.5 mg/dL): 3rd+ Lactation

- Percent
- Day Relative to Calving

Dry Matter Intake

<table>
<thead>
<tr>
<th>Variable</th>
<th>Prepartum Diet</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control (CON)</td>
<td>MedDCAD</td>
</tr>
<tr>
<td>Prepartum DMI, kg/d</td>
<td>14.55</td>
<td>15.08</td>
</tr>
<tr>
<td>Prepartum DMI, % of BW</td>
<td>1.87</td>
<td>1.89</td>
</tr>
<tr>
<td>Postpartum (wk 1 to 3) DMI, kg/d</td>
<td>20.99</td>
<td>21.74</td>
</tr>
<tr>
<td>Postpartum (wk 1 to 9) DMI, kg/d</td>
<td>24.73</td>
<td>25.67</td>
</tr>
</tbody>
</table>

Energy Balance: Through Week 9

Milk Production: Weeks 1 to 3

<table>
<thead>
<tr>
<th>Variable</th>
<th>Prepartum Diet</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control (CON)</td>
<td>MedDCAD</td>
</tr>
<tr>
<td>Milk yield, kg/d</td>
<td>40.54</td>
<td>42.13</td>
</tr>
<tr>
<td>Fat, %</td>
<td>4.38</td>
<td>4.38</td>
</tr>
<tr>
<td>Fat, kg</td>
<td>1.74</td>
<td>1.81</td>
</tr>
<tr>
<td>3.5% FCM, kg/d</td>
<td>45.63</td>
<td>47.52</td>
</tr>
<tr>
<td>True protein, %</td>
<td>3.54</td>
<td>4.19</td>
</tr>
<tr>
<td>True protein, kg</td>
<td>1.36</td>
<td>1.42</td>
</tr>
<tr>
<td>Lactose, %</td>
<td>4.64</td>
<td>4.67</td>
</tr>
<tr>
<td>Lactose, kg</td>
<td>1.89</td>
<td>1.98</td>
</tr>
<tr>
<td>Total Solids, %</td>
<td>13.63</td>
<td>13.61</td>
</tr>
<tr>
<td>Total Solids, kg</td>
<td>5.42</td>
<td>5.65</td>
</tr>
<tr>
<td>ECM, kg/d</td>
<td>46.12</td>
<td>48.04</td>
</tr>
<tr>
<td>MUN, mg/dL</td>
<td>10.32</td>
<td>9.72</td>
</tr>
<tr>
<td>SCS</td>
<td>2.62</td>
<td>3.26</td>
</tr>
</tbody>
</table>
Impact of Decreasing DCAD in the Prepartum Diet

- Mineral Status
 - Higher plasma Ca for several days postpartum
 - Decreased hypocalcemia incidence in older cows
 - Lower postpartum Mg – what are the implications?

- Early Lactation Performance (Weeks 1 to 3):
 - Increased postpartum DMI
 - Increased milk yield
 - Increased fat corrected milk yield (trend)
 - Increased energy-corrected milk yield (trend)

Questions to answer about DCAD application:

- Can SCH be controlled with the use of a DCAD program?
 - Improved Ca status overall, lower SCH incidence in older cows

- Are there benefits to partial anion supplementation?
 - Mixed response of MedDCAD group, but linear responses in blood calcium, intake and production indicates there is some benefit

- If anion supplementation is increased, are there increased benefits in mineral status and performance?
 - Greatest blood calcium, intake and production responses in LowDCAD group
Acknowledgements

Dr. Tom Overton
Dr. Daryl Nydam
Dr. Julia Felippe
Dr. Rob Gilbert
Charlene Ryan
Susanne Pelton
Maris McCarthy
Takashi Yasui
Sarah Williams
Allison Lawton
Lisa Furman
Zane Leno
CURC Crew
Luciano Caixeta
Elizabeth Martens
Marissa Horton
Rheanna Foley
Brooke Ryan
Kate Brust
Dani Harris
Jaco Webb
Claire Seely