Cropping Considerations for Herds Considering non-GMO Production

Joe Lawrence, Cornell University PRO-DAIRY

79th Annual Cornell Nutrition Conference for Feed Manufacturers
October 17-19, 2017

Genetically Engineered Field Crops

GE Crop – a crop that has genetic material inserted to provide a specific characteristic to the crop
• Commonly done in field crops for
 • Herbicide Tolerance (HT)
 • Insect Pest Tolerance (Bt)
 • Drought Tolerance (in some cases)
• More recent examples moving beyond pest tolerance
 • Low Lignin (High Quality) Alfalfa

Crops of Potential Interest: DAIRY

Field Crops where certain varieties/hybrids contain GE Traits
• Corn
• Alfalfa
• Soybean
• Cotton
• Canola
• Sugar Beets

Conventional – term often used to describe a crop variety/hybrid that does not contain a GE Trait

Conventional ≠ non-GMO certified
Field Corn

<table>
<thead>
<tr>
<th>Genetically Engineered</th>
<th>Conventional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbicide Tolerance</td>
<td>• Brown Mid Rib (BMR)</td>
</tr>
<tr>
<td>Glyphosate tolerance</td>
<td>• Low Lignin</td>
</tr>
<tr>
<td>Roundup Ready (RR)</td>
<td>• Alfalfa Snout Beetle Tolerance</td>
</tr>
<tr>
<td>Glyphosate Tolerant (GT)</td>
<td>• Disease Tolerance</td>
</tr>
<tr>
<td>Glufosinate tolerance</td>
<td>• Disease Tolerance</td>
</tr>
<tr>
<td>Liberty Link (LL)</td>
<td>• Drought Tolerance</td>
</tr>
<tr>
<td>2,4-D tolerance</td>
<td>• SOMETIMES, check with seed supplier</td>
</tr>
<tr>
<td>Enlist</td>
<td></td>
</tr>
<tr>
<td>Dicamba tolerance</td>
<td></td>
</tr>
<tr>
<td>Roundup Ready Plus Extend</td>
<td></td>
</tr>
<tr>
<td>Bt Insect Protection</td>
<td></td>
</tr>
<tr>
<td>Corn Rootworm</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera (Moths & Butterflies)</td>
<td></td>
</tr>
<tr>
<td>Drought Tolerance</td>
<td></td>
</tr>
<tr>
<td>SOMETIMES, check with seed supplier</td>
<td></td>
</tr>
</tbody>
</table>

Alfalfa

<table>
<thead>
<tr>
<th>Genetically Engineered</th>
<th>Conventional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbicide Tolerance</td>
<td>• High Quality (HQ)</td>
</tr>
<tr>
<td>Glyphosate tolerance</td>
<td>• Low Lignin (other than HarvXtra)</td>
</tr>
<tr>
<td>Roundup Ready (RR)</td>
<td>• Hybrid</td>
</tr>
<tr>
<td>Low Lignin</td>
<td>• Multifoliate</td>
</tr>
<tr>
<td>HarvXtra*</td>
<td>• Potato Leafhopper Tolerance</td>
</tr>
<tr>
<td>SOMETIMES, check with seed supplier</td>
<td>• Alfalfa Snout Beetle Tolerance</td>
</tr>
<tr>
<td></td>
<td>• Disease Tolerance</td>
</tr>
<tr>
<td></td>
<td>• Branch Rooted</td>
</tr>
</tbody>
</table>

*Currently all HarvXtra alfalfa is also RR

Farm Transition: GE & The IPM Toolbox

- Integrated Pest Management (IPM) principals encourages data driven decision making to match the best management tool to the situation
 - Cultural Control
 - Biological Control
 - Chemical Control
 - GE Control
 - No Control
 - In some cases pest are below an economic threshold where the cost of control is higher than the expected return

Farm Transition: Seed / Crop Selection

- Begin the process early
- Hybrid/Variety selection (at least initially) may be more limited
 - Relative Maturities
 - Desired traits
- Pre-order of additional seed treatment
- Seed companies need very clear guidelines for what will meet the definition of “GMO Free” based on the standard their customers may be subject to.
Farm Transition: Understanding Pest Populations

- Life Cycle of Insect Pest
 - Corn Rootworm
 - Western Bean Cutworm
- Predominant Weed Populations
 - Annuals vs. Perennials
 - Grass vs. Broadleaf
 - Time of emergence

Farm Transition: Crop Rotation

- Management of Pest
 - Shorten consecutive years of corn
 - Assess acreage needs and suitability
 - Soil Management, Topography
 - Reconfigure fields (strip cropping)
- Residual Herbicide
 - Several herbicide options present for non-HT corn have longer residual times in the soil and may also carry additional crop rotation restrictions.

Farm Transition: Field Buffers

- Primarily a concern for Corn in Northeast
- Slightly higher concern in grain
 - 1 pollen = 1 kernel
- Considerations (Dr. Elson Shields, 2017)
 - 8-10% of pollen escapes to the upper atmosphere and moves miles.
 - Silks emerge a couple of days before local pollen shed. This window is where contamination happens.
 - Seed production fields are separated by a minimum of 2 miles and still suffer 2-5% contamination.

Farm Transition: Field Equipment

- Tillage
- Corn Planter – Insecticide Boxes*
 - Corn Rootworm
- Spray Equipment – High Clearance
 - Western Bean Cutworm
 - Corn Rootworm

* Farm Staff with Pesticide Applicators Licenses
Farm Transition: Field Buffers

- Field Buffers
 - No guaranteed distance,
 - Many suggest referencing distances used in certified seed production
- Communication with neighbors.

 “Temporal separation is the best.”
 - “Plant your non-GE fields first, ahead of the neighbors so when the silks emerge, there is no pollinating corn around.”
 - Dr. Elson Shields, 2017

Farm Transition: Production Potential

- Row Crops – Under *optimum* conditions conventional varieties/hybrids have yield potential equivalent to GE

 - GE technology has helped to close the gap between yield potential and actual yield - National Academies of Sciences, Engineering, and Medicine, 2016
 - Reduces incidences of yield loss from stressors
 - Pest
 - Weather

Farm Transition: Pest Damage & Feed Quality

Potential impacts of insect damage
- Overall Yield
- Harvest Challenges
- Plant Health
- Rate of Dry Down
- Reduction in Grain content
- Physical injury opens door for molds
 - potential to develop mycotoxins*
 - *Evidence of strong correlation is lacking, Work in this area on-going

*Table: Minimum Land, Isolation, Field, and Seed Standards - 7CFR 319.36

<table>
<thead>
<tr>
<th>Crop</th>
<th>Minimum Isolation Distance in Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>1200 (Hybrid)</td>
</tr>
<tr>
<td>Hybrid Corn</td>
<td>600</td>
</tr>
<tr>
<td>Soybeans</td>
<td>0</td>
</tr>
<tr>
<td>Cotton</td>
<td>0</td>
</tr>
<tr>
<td>Rape (Canola)</td>
<td>1500 (Hybrid)</td>
</tr>
</tbody>
</table>

https://www.law.cornell.edu/cfr/7/7CFR319.36
Farm Transition: Production Cost

Corn
- Conventional can have a lower production cost; however, small deviations can erase the difference
 - Weed Control
 - Post emergence control of grass weeds
 - Insecticide
 - Seed Treatment
 - Rescue application

Soybeans, Cotton, Canola – more consistent monetary benefits with GE

Alfalfa (Low Lignin) – studies suggest value of increased quality far exceeds increased seed cost

<table>
<thead>
<tr>
<th>2017 Corn Budget *</th>
<th>Total Cost ($/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMO</td>
<td>$638.42</td>
</tr>
<tr>
<td>Non-GMO</td>
<td>$618.85</td>
</tr>
</tbody>
</table>

* Source: University of Missouri

Future Considerations

- Current market opportunities
 - vs. Protecting production technology
- Stewardship & preservation of technology
- Increasing variability in growing conditions
- Future applications beyond pest management
 - Introducing tannins into the alfalfa plant that would slow the rate of protein degradation in the rumen, thereby increasing the bypass protein available from the plant (Mark McClaslin, 2016)

Thank You!

Joe Lawrence, MS, CCA
Dairy Forage Systems Specialist
Cornell University PRO-DAIRY
jrl65@cornell.edu
315-778-4814
http://prodairy.cals.cornell.edu/
Resources

- 2017 Crop Budgets
 University of Missouri
 http://extension.missouri.edu/scott/crop-budgets.aspx

- GMO CONTAMINATION PREVENTION What Does it Take?
 University of Minnesota
 http://www.extension.umn.edu/garden/master-gardener/volunteers/teaching-tools/docs/minimizing_gmo_contamination.pdf

- Managing “Pollen Drift” to Minimize Contamination of Non-GMO Corn
 The Ohio State University
 https://ohioline.osu.edu/factsheet/agf-153

- What Crop Traits are Genetically Engineered (or GMO)?
 Cornell University