Precision Feed Management – What Have We Learned?

Dr. L. E. Chase
Dept. of Animal Science
Cornell University

Why?

► 1. Improve dairy farm profitability.
► 2. Improve the efficiency of nutrient use.
► 3. Decrease nutrient excretion into the environment (soil, water, air).
► 4. Help to comply with environmental regulations.

What is Precision Feed Management (PFM)?

► Definition by NY PFM Working Group
 “The continual process of providing adequate, but not excess, nutrients to the animal and deriving a majority of nutrients from homegrown feeds through the integration of feeding and forage management for the purpose of maintaining environmental and economic sustainability”
New York PFM Working Group

- Established to develop a unified approach to evaluate and quantify Precision Feed Management (PFM) on dairy farms.
- Developed 2 tools:
 - PFM benchmarks
 - Spreadsheet to calculate nutrient intake, nutrient excretion, feed cost and returns over feed cost.

The Components of Precision Feed Management

- Precision Feed Management
 - Precision Diet Formulation and Delivery
 - Forage Systems Management

New York PFM Benchmarks

<table>
<thead>
<tr>
<th>Ration P, % of required</th>
<th>< 110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ration CP, %</td>
<td>< 16.5</td>
</tr>
<tr>
<td>MUN, mg/dl</td>
<td>8 – 12</td>
</tr>
<tr>
<td>F-NDF, % of BW</td>
<td>> 0.9</td>
</tr>
<tr>
<td>Forage DM, % of ration DM</td>
<td>≥ 60</td>
</tr>
<tr>
<td>Home produced feeds, % of ration DM</td>
<td>≥ 60</td>
</tr>
<tr>
<td>Cows dead or culled, < 60 DIM</td>
<td>< 8%</td>
</tr>
</tbody>
</table>

Nutrients Regulated

- Nitrogen -
 - Water
 - Air emissions (ammonia)
- Phosphorus -
 - Water
- Methane – The next one.
How Do Cows Partition Nutrients?

- Excrete in milk.
- Excrete in manure.
- Store in body reserves.

What Is The Opportunity?

- 1450 lb. cow, 70 lbs. milk, 47 lbs. DMI
- Lower ration CP % by 1 unit = - 27.5 lbs./cow/year of N excreted in the manure
- Lower ration P by 0.05% = - 8.5 lbs./cow/year of P excreted in the manure

What if This Change Was Done to All Cows in New York?

- 17.1 million less pounds of N excreted in the manure.
- 8.5 million less pounds of P excreted in the manure.

Based on 622,000 milking cows.

Dairy Farm Sustainability Project

- Whole farm project – 1990-1993.
- 2 large high producing herds in Cayuga county.
- 16 Cornell faculty from 9 departments.
- Included –
 - Rations and feeding management.
 - Crops – rotations, fertilization, harvest management.
 - Whole farm mass nutrient balance.
 - Water quality.
 - Manure management.
 - Economics.
Nitrogen Excretion – Herd A

Decreases:
- Total N = 34%
- Organic N = 15%
- NH3-N = 45%

Milk = 23,500
Organic N
NH3-N = 45%

What Else Did We Learn?

- Feed cost could be reduced and income over feed cost increased by lowering N and P in the rations with no negative effects on milk production.
- Excretion of N and P in the manure was reduced.
- Manure NH3 was dramatically reduced.
- Whole farm mass balance was improved since nutrient imports to the farm were decreased.
- Overall farm profitability improved.

Other NY PFM Efforts

- Delaware County has been doing a lot of work on farms due to the concerns of water quality in the New York City Watershed.
- The Central NY Dairy and Field Crops Team has done a number of farms.
- There has been some effort by the NW NY Regional Dairy, Livestock and Field Crops team.
- NRCS is in the process of developing a program to partially fund PFM work on dairy farms.
- We did a project with 18 farms to develop base information to assist NRCS.

- 9 dairy herds in Delaware, Tioga and Broome counties.
- Herd size = 30 to 600 cows.
- Milk production = 28 to 87 lbs./cow/day.
- Mix of herd forage and feeding programs and housing type.
- 5 fed total mixed rations.
- One herd feeds forage only (no grain is fed).
- Used fixed milk and feed prices in the economic analysis.
Delaware County Project - 2

- Rations were formulated by nutritionists working with the herds.
- 5 feed companies, 2 nutrition consultants.
- PFM staff visited herds to collect feed samples, cow information, milk and feed prices.
- PFM plans were written and approved by NRCS.
- Each herd had to contribute a portion of the total project cost.

Results

- All herds were at or below the PFM benchmark for P at the beginning of the trial.
- Lowered ration CP by 1.8% (range = 0.7 to 4%).
- Decreased manure N excretion by 15% (range 5 to 29%).
- Decreased manure N excretion by 60 g/cow/day (48 lbs./cow/year).
- Increased income over purchased feed cost by 40 cents/cow/day ($146/cow/year).

Ration CP, %

<table>
<thead>
<tr>
<th>Herd</th>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>B</td>
<td>16</td>
<td>17.1</td>
</tr>
<tr>
<td>C</td>
<td>16</td>
<td>17.5</td>
</tr>
<tr>
<td>D</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>E</td>
<td>15.5</td>
<td>17.4</td>
</tr>
<tr>
<td>F</td>
<td>18.7</td>
<td>19.7</td>
</tr>
<tr>
<td>G</td>
<td>14.9</td>
<td>16.2</td>
</tr>
<tr>
<td>H</td>
<td>15.7</td>
<td>16.2</td>
</tr>
</tbody>
</table>

Decrease in Manure N Excretion, lbs./cow/year

<table>
<thead>
<tr>
<th>Herd</th>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>26.3</td>
<td>26.6</td>
</tr>
<tr>
<td>B</td>
<td>29.8</td>
<td>25</td>
</tr>
<tr>
<td>C</td>
<td>33.6</td>
<td>27.5</td>
</tr>
<tr>
<td>D</td>
<td>34.4</td>
<td>23.6</td>
</tr>
<tr>
<td>E</td>
<td>63.6</td>
<td>40</td>
</tr>
<tr>
<td>F</td>
<td>119.1</td>
<td>88.6</td>
</tr>
<tr>
<td>G</td>
<td>17.7</td>
<td>33.6</td>
</tr>
<tr>
<td>H</td>
<td>25.5</td>
<td>17.7</td>
</tr>
</tbody>
</table>
Adding a Low Group Ration

- Herd with 576 milking cows, 85-87 lbs. milk/cow/day.
- Were feeding 2 rations (fresh, high) to the milking cows.
- Worked with the herd consultant and added a "low" cow TMR.
- No change in milk production.
- Feed cost decreased by 65 cents/cow/day.
- This is $30,842 per group per year for a 130 cow group.

Case Farm Example - Tylutki & Fox

- 500 cow farm, 72-74 lbs. milk/cow/day
- Total animals = 922
- Milking cows = 448
- Dry cows = 100
- Replacements = 374
- Initial P balance = +67%
- Added about 100 milking cows over 5 years.
Potential for precision feed management \(^1\)

<table>
<thead>
<tr>
<th></th>
<th>Purchased Feed Cost, $/day</th>
<th>Milk Shipped, lbs./day</th>
<th>Nitrogen, lb./year</th>
<th>Phosphorus, lb./year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>1813</td>
<td>27,622</td>
<td>309,043</td>
<td>43,435</td>
</tr>
<tr>
<td>After</td>
<td>1375</td>
<td>40,167</td>
<td>256,349</td>
<td>31,192</td>
</tr>
<tr>
<td>% change</td>
<td>-34.2</td>
<td>+45</td>
<td>-17.1</td>
<td>-28.2</td>
</tr>
</tbody>
</table>

\(^1\) Tylutki PhD thesis, 2002. Results of a 5 year research project on a 600 cow dairy.

Changes in Whole Farm Mass Nutrient Farm Mass Nutrient Balance

- Cela et. al., 2015.
- 4 NY case study herds.
- 8 – 10 years of WFMNB data.
- Improved whole farm and feed nutrient use efficiency.
- Maintained or increased milk production.
- Purchased feed nutrients was the main driver for change in WFMNB.
- Highlights importance of PFM.

Summary

- Work to date has indicated that the development and implementation of PFM plans on dairy farms is a win-win for both the farm and the environment.
- Nutrient imports to the farm and ration nutrient levels can be reduced while at least maintaining milk production.
- Nutrient excretion to the environment can be reduced.
- Whole farm nutrient balance can be improved.
- Farm profitability can be increased.

Thanks!